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Poznań University of Life Sciences, Poland
(imejza@up.poznan.pl)

Stanis law Mejza
– Department of Mathematical and Statistical Methods,
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Abstract:

• We consider nested row-column designs with split units for a two-factor experiment.
The most optimal design in this case is that of using for the whole plots a Latin square
while for the subplot treatments with a completely randomized design for each whole
plot. Such a design, in fact optimal, utilizes many experimental units and quite a
large space. Hence to construct new designs of reduced size of the experiment we
use a cyclic design for the whole plot treatments and a square lattice design for the
subplot treatments. The proposed designs are generally balanced and they allow for
giving the stratum efficiency factors, especially useful to design of experiments.
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1. INTRODUCTION

In many biological and agricultural (field) experiments, a nested row-column
design with split units is often used. The design is for a two-factor experiment of
split-plot type with b blocks. The first factor A has v1 levels A1, A2, . . . , Av1 and
the second factor B has v2 levels B1, B2, . . . , Bv2 . Each block is divided into k1
rows and k2 columns and these k1k2 units are treated as whole plots. Moreover,
each whole plot is divided into k3 subplots. The levels of A and B are applied to
the whole plots (called whole plot treatments) and the subplots (called subplot
treatments), respectively. Such a design is called a nested row-column design
with split units.

Kachlicka and Mejza (1996) considered a mixed linear model with fixed
treatment effects and random block, row, column, whole plot and subplot effects
for the nested row-column design with split units. The hth factorial treatment
combination effect τh is defined by

τh = µ+ αi + βj + (αβ)ij

for h = (i− 1)v2 + j, i = 1, 2, . . . , v1 and j = 1, 2, . . . , v2, where µ is the general
mean, αi denotes the main effect of the ith whole plot treatmentAi, βj denotes the
main effect of the jth subplot treatment Bj and (αβ)ij denotes the interaction
effect of Ai and Bj . Here

∑v1
i=1 αi = 0,

∑v2
j=1 βj = 0,

∑v1
i=1(αβ)ij = 0 for

j = 1, 2, . . . , v2 and
∑v2

j=1(αβ)ij = 0 for i = 1, 2, . . . , v1. The mixed linear model
results from a four-step randomization, i.e., the randomization of blocks, the
randomization of rows within each block, the randomization of columns within
each block and the randomization of subplots within each whole plot. This kind
of randomization leads us to an experiment with orthogonal block structure as
defined by Nelder (1965a, 1965b) and the multistratum analysis proposed by
Nelder (1965a, 1965b) and Houtman and Speed (1983) can be applied to the
analysis of data in the experiment. In this case, we have five strata, except zero
stratum connected with the general mean only, (I) inter-block stratum, (II) inter-
row stratum, (III) inter-column stratum, (IV) inter-whole plot stratum and (V)
inter-subplot stratum. The statistical properties of the nested row-column design
with split units are strictly connected with the eigenvalues and the eigenvectors of
the stratum information matrices for the treatment combinations. The stratum
information matrices A1, A2, A3, A4 and A5 are given by

(1.1) A1 =
1

k1k2k3
N0N

′
0 −

r

v
Jv, A2 =

1

k2k3
N1N

′
1 −

1

k1k2k3
N0N

′
0,

(1.2) A3 =
1

k1k3
N2N

′
2 −

1

k1k2k3
N0N

′
0,

(1.3) A4 =
1

k3
N3N

′
3 −

1

k1k3
N2N

′
2 −

1

k2k3
N1N

′
1 +

1

k1k2k3
N0N

′
0
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and

(1.4) A5 = rIv −
1

k3
N3N

′
3,

where v = v1v2, N0, N1, N2 and N3 are the incidence matrices for the treatment
combinations vs. blocks, rows, columns and whole plots, respectively, Iv is the
identity matrix of order v and Jv is the v × v matrix with every element unity.
Here we assume that every treatment combination AiBj (i = 1, 2, . . . , v1, j =
1, 2, . . . , v2) occurs in precisely r blocks and the treatment combinations are or-
dered lexicographically.

A generally balanced design was firstly introduced by Nelder (1965a, 1965b),
for which the stratum information matrices are spanned by a common set of eigen-
vectors. Let s0, s1, . . . , sv−1 be the mutually orthonormal common eigenvectors
of the stratum information matrices A1, A2, A3, A4 and A5. Since Af1v = 0 for
f = 1, 2, 3, 4, 5, 1√

v
1v may be chosen as the first eigenvector s0, where 1v is the

v × 1 vector of unit elements. Let ξfh be an eigenvalue of a matrix A∗f = r−1Af

corresponding to the eigenvector sh for f = 1, 2, 3, 4, 5 and h = 1, 2, . . . , v − 1.
Then, a basic contrast of the treatment effects (see Pearce et al. (1974)) is de-
fined by s′hτ for h = 1, 2, . . . , v − 1, where τ is the v × 1 vector of the treatment
effects. The eigenvalue ξfh can be identified as a stratum efficiency factor of the
design concerning estimation of the hth basic contrast in the fth stratum for
f = 1, 2, 3, 4, 5 and h = 1, 2, . . . , v − 1 (see, Houtman and Speed (1983)).

Many experiments require a long time or a large space (units) often mak-
ing it impossible to carry out a conventional, complete (orthogonal) design of the
considered type. For example, in agricultural field experiments, because of soil
fertility it is difficult to find units (plots) fulfilling restrictions concerning the ho-
mogeneity of blocks, rows, columns, whole plots or subplots. Then, to satisfy the
main experimental principles it is necessary to design the experiment as an in-
complete (non-orthogonal) one. Such an experiment usually utilizes smaller units,
with respect to size and also utilizes smaller number of units (the experiment is
cheaper). The problem is to find an incomplete design proper to experimental
material structure and optimal with respect to statistical properties of the design.

Kuriki et al. (2009), Mejza et al. (2009) and Mejza and Kuriki (2013)
constructed nested row-column designs with split units by the Kronecker product
of the incidence matrices of two designs. They used a Youden square for the whole
plot treatments and various proper designs for the subplot treatments. Mejza et
al. (2014) have used a balanced incomplete block design with nested rows and
columns instead of the Youden square to construct a nested row-column design
with split units. The designs obtained by this way need usually a large number of
units. In this paper, we construct a nested row-column design with split units by
a modified Kronecker product (called a semi-Kronecker product) of the incidence
matrices of two designs. We use a cyclic design for the whole plot treatments
and a square lattice design for the subplot treatments. We give the stratum
efficiency factors for such a nested row-column design with split units, which has
the general balance property.
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These designs have smaller numbers of blocks than the conventional exper-
iments. Therefore, they would be useful in practice, for example, the reduction
of the experimental expenses and effort, and the easier implementation of the
experiments by using the well-known cyclic designs and square lattice designs
in the literature (see, John (1987), John and Williams (1995) and Raghavarao
(1971), etc.).

Other variants of incomplete split plot designs are given, for example, by
Mejza and Mejza (1996), Ozawa et al. (2004), Aastveit et al. (2009), Mejza et
al. (2012) and Kuriki et al. (2012).

2. A CONSTRUCTION BY A CYCLIC DESIGN AND A SQUARE
LATTICE DESIGN

Firstly, we need the semi-Kronecker product (see, Khatri and Rao (1968)
and Mejza, Kuriki and Mejza (2001)) of two matrices that will be used to con-
struct nested row-column designs with split units. Suppose that two matrices E
and F are divided into the same number of submatrices as follows:

E = (E1 : E2 : · · · : Em) and F = (F1 : F2 : · · · : Fm).

Then, the semi-Kronecker product E ⊗̃F is defined by

E ⊗̃F = (E1 ⊗ F1 : E2 ⊗ F2 : · · · : Em ⊗ Fm),

where ⊗ denotes the usual Kronecker product.

Next, we need a cyclic design and a square lattice design. Let V be a set of
v treatments and let B be a collection of subsets (called blocks) of V . A design
(V,B) is denoted by D(v, r, k) if every treatment occurs in precisely r blocks
and each block contains k treatments. Let Zv be the additive group of integers
modulo v and let (V,B) be a D(v, r, k) with V = Zv for which if {a1, a2, . . . , ak}
is a block, then {a1 + 1, a2 + 1, . . . , ak + 1} is also a block. A set of blocks
{{a1 + i, a2 + i, . . . , ak + i} | i ∈ Zv} is called a cyclic class and a block taken
arbitrarily from each cyclic class is called an initial block. If the collection B of
blocks is divided into some cyclic classes, then (V,B) is said to be cyclic and it is
denoted by CD(v, r, k). Here we consider only a case where the number of blocks
in each cyclic class is v.

Let (V,B) be a D(v, r, k). If the collection B of blocks can be grouped in
such a way that every treatment occurs precisely once in every group (called a
resolution class), then (V,B) is said to be resolvable. A resolvable D(v, r, k) (V,B)
such that v = s2, r ≤ s + 1 and k = s for a positive integer s is called a square
lattice design if any two blocks from different resolution classes contain just one
common treatment, and it is denoted by SLD(s2, r, s). If r = s+ 1, it is called a
balanced square lattice design and it is well known that there exists a balanced
square lattice design if s is a prime or a prime power (see, Raghavarao (1971)).
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Now we construct a nested row-column design with split units. Let (VA,BA)
be a CD(vA, rA, kA) with m = rA/kA initial blocks. Each cyclic class of (VA,BA)
is treated as a block with kA rows and vA columns such that the columns are
blocks of BA and that every treatment of VA occurs precisely once in each row.
Such a design is denoted by DA. An SLD(s2,m, s) is denoted by DB. The
whole plot treatments occur in DA and the subplot treatments occur in DB. We
construct a nested row-column design, say D, with split units embedding each
block of the ith resolution class of DB in every whole plot of the ith block of
DA for i = 1, 2, . . . ,m. The parameters of D are v1 = vA, v2 = s2, b = ms,
r = mkA = rA, k1 = kA, k2 = vA and k3 = s.

Example 2.1. We use an A-efficient cyclic design CD(6, 6, 3) with initial
blocks {0, 1, 2} and {0, 1, 3} given by John (1987). From two cyclic classes of this
design, we have the following two blocks with 3 rows and 6 columns of DA:

0 1 2 3 4 5

1 2 3 4 5 0

2 3 4 5 0 1

and

0 1 2 3 4 5

1 2 3 4 5 0

3 4 5 0 1 2

.

We also use a square lattice design SLD(9, 2, 3) DB = (VB,BB) with VB =
{1, 2, . . . , 9}. The following columns are 6 blocks of DB:

1
2
3

4
5
6

7
8
9

and
1
4
7

2
5
8

3
6
9
,

where the first resolution class is constituted by the first 3 blocks and the second
one is constituted by the remaining blocks. We construct a nested row-column
design D with split units embedding each block of the first (second) resolution
class of DB in every whole plot of the first (second) block of DA, replacing the
treatments 0, 1, 2, 3, 4, 5 of DA with A1, A2, A3, A4, A5, A6 and the treatments
1, 2, . . . , 9 of DB with B1, B2, . . . , B9. The design D has 6 blocks as follows:

A1 A2 A3 A4 A5 A6

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

A2 A3 A4 A5 A6 A1

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

A3 A4 A5 A6 A1 A2

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

A1 A2 A3 A4 A5 A6

B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6

A2 A3 A4 A5 A6 A1

B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6

A3 A4 A5 A6 A1 A2

B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6
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A1 A2 A3 A4 A5 A6

B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9

A2 A3 A4 A5 A6 A1

B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9

A3 A4 A5 A6 A1 A2

B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9

A1 A2 A3 A4 A5 A6

B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7

A2 A3 A4 A5 A6 A1

B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7

A4 A5 A6 A1 A2 A3

B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7

A1 A2 A3 A4 A5 A6

B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8

A2 A3 A4 A5 A6 A1

B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8

A4 A5 A6 A1 A2 A3

B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8

A1 A2 A3 A4 A5 A6

B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9

A2 A3 A4 A5 A6 A1

B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9

A4 A5 A6 A1 A2 A3

B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9

2

We note that if the nested row-column design with split units is constructed
by the usual Kronecker product of the incidence matrices (see, Mejza et al.
(2014)), then the number of blocks becomes m2s = 12. Generally, the num-
ber of blocks of a nested row-column design with split units by the Kronecker
product is m times larger than those of a nested row-column design with split
units by the semi-Kronecker product.

Let

NA = (NA1 : NA2 : · · · : NAm) and NB = (NB1 : NB2 : · · · : NBm)

be the incidence matrices of the cyclic design CD(vA, rA, kA) and the square
lattice design SLD(s2,m, s), where NAi and NBi correspond to the ith cyclic and
resolution classes, respectively. By the definition of the square lattice design,

(2.1) N′BiNBi = sIs and N′BiNBj = Js

hold for i, j = 1, 2, . . . ,m, i 6= j. Then, the incidence matrix N2 of the nested
row-column design D with split units is given by the semi-Kronecker product of
NA and NB, i.e.,

N2 = NA ⊗̃NB = (NA1 ⊗NB1 : NA2 ⊗NB2 : · · · : NAm ⊗NBm)
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in a suitable order of columns of D, and the concurrence matrices N0N
′
0, N1N

′
1,

N2N
′
2 and N3N

′
3 of D are given by

(2.2) N0N
′
0 =

m∑
i=1

(
k2AJvA ⊗NBiN

′
Bi

)
= k2AJvA ⊗NBN

′
B,

(2.3) N1N
′
1 =

m∑
i=1

(
kAJvA ⊗NBiN

′
Bi

)
= kAJvA ⊗NBN

′
B,

(2.4) N2N
′
2 =

m∑
i=1

(
NAiN

′
Ai ⊗NBiN

′
Bi

)
and

(2.5) N3N
′
3 =

m∑
i=1

(
kAIvA ⊗NBiN

′
Bi

)
= kAIvA ⊗NBN

′
B.

3. STRATUM EFFICIENCY FACTORS FOR D

In this section, we give the stratum efficiency factors for the nested row-
column design D with split units constructed in Section 2. To find the stratum
efficiency factors, it is necessary to find the eigenvalues of the stratum information
matrices A1, A2, A3, A4 and A5 of D. It is easy to find these eigenvalues if A1,
A2, A3, A4 and A5 have the common eigenvectors, i.e., if D is generally balanced.
It follows, from (2.1), that

(3.1) NBiN
′
BiNBjN

′
Bj = Js2

holds for i, j = 1, 2, · · · ,m, i 6= j. From (3.1), it is easily verified that the
concurrence matrices N0N

′
0, N1N

′
1, N2N

′
2 and N3N

′
3 given in (2.2)–(2.5) are

mutually commutative. Thus, by use of (1.1)–(1.4), the stratum information
matrices A1, A2, A3, A4 and A5 are mutually commutative, which means that
A1, A2, A3, A4 and A5 have the common eigenvectors. Therefore, D is generally
balanced.

In order to find the common eigenvectors of the stratum information matri-
ces A1, A2, A3, A4 and A5, i.e., those of the concurrence matrices N0N

′
0, N1N

′
1,

N2N
′
2 and N3N

′
3, we consider the eigenvectors of NAiN

′
Ai for the ith cyclic class

of the cyclic design CD(vA, rA, kA) and those of NBiN
′
Bi for the ith resolution

class of the square lattice design SLD(s2,m, s) for i = 1, 2, . . . ,m. For the inci-
dence matrix NA of the CD(vA, rA, kA), since NA1N

′
A1,NA2N

′
A2, . . . ,NAmN′Am

are symmetric circulant matrices, these matrices have the mutually orthonormal
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common eigenvectors, which are denoted by x0,x1, . . . ,xvA−1 with x0 = 1√
vA

1vA .

The corresponding eigenvalues of NAiN
′
Ai are given by

θ
(i)
j =

vA−1∑
h=0

λ
(i)
h cos

(
2πjh

vA

)

for i = 1, 2, . . . ,m and j = 0, 1, . . . , vA − 1, where λ
(i)
h (h 6= 0) denotes the

number of blocks containing two treatments 0 and h in the ith cyclic class of the

CD(vA, rA, kA) and λ
(i)
0 = kA. In particular, θ

(i)
0 = k2A and the corresponding

eigenvector is x0 = 1√
vA

1vA (see, John (1987) and John and Williams (1995)).

These eigenvalues and common eigenvectors are summarized in the following
table:

Table 1: Eigenvalues and common eigenvectors of NAiN
′
Ai in the

CD(vA, rA, kA).

Eigenvalues Common eigenvectors

k2A
1√
vA

1vA

θ
(i)
j xj (j = 1, 2, . . . , vA − 1)

Similarly, for the incidence matrix NB of the SLD(s2,m, s), from (2.1),
NBiN

′
Bi has the eigenvalues s and 0 with multiplicities s and s(s−1) for each i =

1, 2, . . . ,m. From (3.1), NB1N
′
B1,NB2N

′
B2, . . . ,NBmN′Bm are mutually commu-

tative, so these matrices have the common eigenvectors. Let Q = (q0, q1, . . . , qs−1)
be an orthogonal matrix of order s with q0 = 1√

s
1s. For each i = 1, 2, . . . ,m,

from (2.1), the mutually orthonormal eigenvectors of NBiN
′
Bi corresponding to

the eigenvalue s are given by

zip =
1√
s
NBiqp

for p = 0, 1, . . . , s − 1. In particular, zi0 = 1
s1s2 . The eigenvectors zip are

also the eigenvectors of NBhN
′
Bh (h 6= i) for any other resolution class, and

the eigenvalues of NBhN
′
Bh corresponding to zi0 and zip (p 6= 0) are s and 0,

respectively. Furthermore, the mutually orthonormal common eigenvectors of
NB1N

′
B1,NB2N

′
B2, . . . ,NBmN′Bm corresponding to the eigenvalue 0 are denoted

by z∗q for q = 1, 2, . . . , s2 −m(s − 1) − 1. These eigenvalues and common eigen-
vectors are summarized in Table 2.

Combining the eigenvectors of Table 1 and Table 2, we consider the follow-
ing 6 sets of vectors:

(1)
1
√
vA

1vA ⊗
1

s
1s2 , (2) xj ⊗

1

s
1s2 , (3)

1
√
vA

1vA ⊗ zip,

(4)
1
√
vA

1vA ⊗ z
∗
q , (5) xj ⊗ zip, (6) xj ⊗ z∗q
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Table 2: Eigenvalues and common eigenvectors of NBiN
′
Bi in the

SLD(s2,m, s).

Eigenvalues
Common eigenvectors

NB1N
′
B1 NB2N

′
B2 · · · NBmN′Bm

s s · · · s 1
s1s2

s 0 · · · 0 z1p (p = 1, 2, . . . , s− 1)

0 s · · · 0 z2p (p = 1, 2, . . . , s− 1)
...

...
...

...
...

0 0 · · · s zmp (p = 1, 2, . . . , s− 1)

0 0 · · · 0 z∗q (q = 1, 2, . . . , s2 −m(s− 1)− 1)

for i = 1, 2, . . . ,m, j = 1, 2, . . . , vA − 1, p = 1, 2, . . . , s− 1 and q = 1, 2, . . . , s2 −
m(s−1)−1. The vectors of (1)–(6) are mutually orthonormal and the total num-
ber of the vectors is vAs

2. We show that the vectors of (1)–(6) are the common
eigenvectors of N0N

′
0, N1N

′
1, N2N

′
2 and N3N

′
3, and we find the corresponding

eigenvalues of N0N
′
0, N1N

′
1, N2N

′
2 and N3N

′
3.

Firstly, we take into account the matrix N0N
′
0. For (1), we have, from

(2.2), Table 1 and Table 2,

N0N
′
0

(
1
√
vA

1vA ⊗
1

s
1s2

)
=
(
k2AJvA ⊗NBN

′
B

)( 1
√
vA

1vA ⊗
1

s
1s2

)
=

(
k2AJvA

1
√
vA

1vA

)
⊗
(
NBN

′
B

1

s
1s2

)
=

(
vAk

2
A

1
√
vA

1vA

)
⊗
(
ms

1

s
1s2

)
= mvAk

2
As

(
1
√
vA

1vA ⊗
1

s
1s2

)
.

The corresponding eigenvalue is mvAk
2
As.

For (2), we have

N0N
′
0

(
xj ⊗

1

s
1s2

)
=
(
k2AJvAxj

)
⊗
(
NBN

′
B

1

s
1s2

)
= 0.

The corresponding eigenvalue is zero for each i = 1, 2, . . . ,m and j = 1, 2, . . . , vA−
1.

For (3), we have

N0N
′
0

(
1
√
vA

1vA ⊗ zip
)

=

(
k2AJvA

1
√
vA

1vA

)
⊗
(
NBN

′
Bzip

)
=

(
vAk

2
A

1
√
vA

1vA

)
⊗

(
m∑

h=1

NBhN
′
Bhzip

)
=

(
vAk

2
A

1
√
vA

1vA

)
⊗ (szip)

= vAk
2
As

(
1
√
vA

1vA ⊗ zip
)
.
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The corresponding eigenvalue is vAk
2
As for each i = 1, 2, . . . ,m and p = 1, 2, . . . , s−

1.

For (4), we have

N0N
′
0

(
1
√
vA

1vA ⊗ z
∗
q

)
=

(
k2AJvA

1
√
vA

1vA

)
⊗
(
NBN

′
Bz
∗
q

)
=

(
vAk

2
A

1
√
vA

1vA

)
⊗

(
m∑
i=1

NBiN
′
Biz
∗
q

)
= 0.

The corresponding eigenvalue is zero for q = 1, 2, . . . , s2−m(s−1)−1. Moreover,
for (5) and (6), the eigenvalue is also zero.

Similarly, from (2.3)–(2.5), we can show that the vectors of (1)–(6) are also
the eigenvectors of N1N

′
1, N2N

′
2 and N3N

′
3. The corresponding eigenvalues of

N0N
′
0, N1N

′
1, N2N

′
2 and N3N

′
3 are summarized in the table below:

Table 3: Eigenvalues and common eigenvectors of N0N
′
0, N1N

′
1, N2N

′
2

and N3N
′
3.

Eigenvalues Common
N0N

′
0 N1N

′
1 N2N

′
2 N3N

′
3 eigenvectors

mvAk
2
As mvAkAs mk2As mkAs (1)

0 0
∑m

i=1 θ
(i)
j s mkAs (2)

vAk
2
As vAkAs k2As kAs (3)

0 0 θ
(i)
j s kAs (5)

0 0 0 0 (4), (6)

Here i = 1, 2, . . . ,m and j = 1, 2, . . . , vA − 1.

The vectors (1)–(6) are also the common eigenvectors of the stratum infor-
mation matrices A1, A2, A3, A4 and A5. By use of (1.1)–(1.4) and Table 3, the
stratum efficiency factors for D can be calculated as in the following table:

Table 4: Stratum efficiency factors for D.

Type of Number of Strata
contrasts contrasts I II III IV V

A vA − 1 0 0 ωj 1− ωj 0

B m(s− 1) 1/m 0 0 0 1− 1/m
s2 −m(s− 1)− 1 0 0 0 0 1

A×B m(vA − 1)(s− 1) 0 0 ξij 1/m− ξij 1− 1/m
(vA − 1){s2 −m(s− 1)− 1} 0 0 0 0 1

for i = 1, 2, . . . ,m and j = 1, 2, . . . , vA − 1, where A and B denote the basic con-
trasts among the main effects of whole plot and subplot treatments, respectively,
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A×B denotes the basic contrasts among the interaction effects, ξij = θ
(i)
j /(mk2A)

and ωj =
∑m

i=1 ξij . The eigenvectors of (2), (3)–(4) and (5)–(6) define the basic
contrasts A, B and A×B, respectively. We use Table 4 in order to improve the
estimators for the basic contrasts of the treatment effects combining the estima-
tors obtained from the strata I, III, IV and V. This procedure was proposed by
Nelder (1965a, 1965b) and Houtman and Speed (1983). Especially, we see that
some basic contrasts of B and A×B are estimable with full efficiency.

Example 3.1. For the nested row-column design D with split units

given in Example 2.1, m = 2, vA = 6, kA = 3, s = 3, θ
(1)
1 = 4, θ

(1)
2 = 0,

θ
(1)
3 = 1, θ

(1)
4 = 0, θ

(1)
5 = 4, θ

(2)
1 = 1, θ

(2)
2 = 3, θ

(2)
3 = 1, θ

(2)
4 = 3 and θ

(2)
5 = 1.

Thus, by use of Table 4, the stratum efficiency factors can be calculated as in the
following table:

Table 5: Stratum efficiency factors for D given in Example 2.1.

Type of Number of Strata
contrasts contrasts I II III IV V

A 1 0 0 1/9 8/9 0
2 0 0 1/6 5/6 0
2 0 0 5/18 13/18 0

B 4 1/2 0 0 0 1/2
4 0 0 0 0 1

A×B 4 0 0 0 1/2 1/2
4 0 0 1/6 1/3 1/2
4 0 0 2/9 5/18 1/2
8 0 0 1/18 4/9 1/2
20 0 0 0 0 1

4. REMARKS

In the design of experiments at least a few aspects play crucial roles. The
first one concerns proper use of available structure of experimental units. The
general rule, for example, in field agricultural experiments constitutes that smaller
units better satisfy requirements concerning homogeneity of stratum units. In
addition, usually smaller errors are associated after randomizations with these
units.

The second aspect concerns statistical properties of designs. Using com-
plete, orthogonal designs leads to the best unbiased estimators of the estimable
functions of linear model parameters. In this work, we use a randomization-
derived linear model (random block effect describing structure of units) with
treatment (combination) effects being fixed. The structure of units and random-
ization performed lead to a design which possesses orthogonal block structure.
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In a complete case, the estimators of all estimable treatment effect functions are
BLUEs. This means that the design is optimal from a point of view of statis-
tical properties. Such a design can be used for our experiment if it is possible.
However, many times there exist some limitations in available structure of exper-
imental units (material). Then in our experiment some incomplete design can be
applied only.

The new problem concerns how to choose an incomplete design that fits to
the structure of experimental units, is optimal for the most interesting treatment
effect functions, and is not so expensive (utilizes small as possible number of units
of proper size). In the worse case we can use any incomplete design. Then it is
difficult to describe the statistical properties of the proposed design.

The experimenter usually makes a ranking of linear functions of treatment
effects (contrasts) with respect to a scientific interest and an aim of the experi-
ment. It would be helpful to have a design with known efficiencies of all estimable
treatment effect functions. This property has a generally balanced design (see,
for example, Mejza (1992) and Bailey (1994)). General balance aids interpreta-
tion; the design which is generally balanced with respect to meaningful contrasts
may be superior to a technically optimal design. For generally balanced designs,
we can identify the meaning of the treatment effect contrasts and their efficiency
factors (cf. Table 2, Table 3 and Table 4). Hence we restrict our searching in the
class of generally balanced designs.

Those considered here (nested row-column designs with split units) can be
characterized by a few component block designs. We are looking for methods
allowing for generation of new row-column designs with split units by using some
known incomplete block designs instead of component designs. The Kronecker
product of the component incomplete block designs is often used for constructing
new designs with split units. The final design possesses optimal properties, but
it utilizes many experimental units (high cost of the experiment). To overcome
this problem (size of the experiment) we proposed to use of the semi-Kronecker
product as defined in Section 2 instead of the ordinary Kronecker product. The
final design is much smaller and also possesses desirable statistical properties (see
Example 2.1). Moreover using the semi-Kronecker product to generate new de-
signs leads to much smaller number of units and smaller size. In the Example 2.1,
one block of the complete design will have 6 rows and 6 columns while the whole
plot consists of 9 units. For example, in agricultural field experiments (where
such designs are very often used) it would be difficult to find so many homo-
geneous plots. In these cases the use of an incomplete design is recommended.
In this paper, we construct a nested row-column design with split units by the
semi-Kronecker product of the incidence matrices of a cyclic design for the whole
plot treatments and a square lattice design for the subplot treatments. We give
the stratum efficiency factors for such a nested row-column design with split units
having the general balance property.

Although we proposed the new method for constructing the design in the
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class of nested row-column designs with split units, we still need new methods for
constructing designs in the considered class which will lead to general balanced
designs with desirable statistical properties and will have reasonable size. Natu-
rally, in the future work for construction optimal row-column designs with nested
structures someone can look for new methods and for another class of incomplete
block designs as considered in the paper.
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